The diffusion of hydrogen and inert gas in sputtered a-SiC:H alloys: Microstructure study

Rosari Saleha*, Lusitra Munisaa and Wolfhard Beyerb

aJurusan Fisika, Fakultas MIPA, Universitas Indonesia, Depok 16424, Indonesia

bInstitut für Photovoltaik (IPV), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

Received 24 May 2005; revised 10 April 2006. Available online 28 August 2006.

Abstract

The microstructure of DC sputtered amorphous silicon carbon (a-SiC:H) is studied by effusion measurements of hydrogen and of implanted inert gases helium, neon, argon and secondary ion mass spectrometry. The results suggest that the motion of inert gas atoms is controlled by the diffusion, greatly depending on a broadening of network openings. Already at carbon concentrations of 25 at\%, isolated voids disappeared presumably because interconnected voids are formed. A void formation is mainly attributed to an increase in hydrogen incorporation in the samples.

Keywords: Amorphous films; Sputtering; Hydrogen effusion; SIMS

Diakses dari: http://www.sciencedirect.com/scienced?_ob=ArticleURL&_udi=B6V51-4KRY3P2-3&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1006801871&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6b2d3fd137264d07e3df9e676ac237c3