Effects of doping on structural change and hydrogen bonding in laser crystallized polycrystalline silicon films

R. Saleha and N.H. Nickelb

aJurusan Fisika, Fakultas MIPA, Universitas Indonesia, 16424 Depok, Indonesia
bHahn-Meitner-Institut Berlin, Kekuléstr.5, D-12489 Berlin, Germany

Received 19 June 2006; revised 6 September 2006; accepted 16 October 2006. Available online 28 November 2006.

Abstract

Doped polycrystalline silicon films were produced by employing a step-by-step laser crystallization of doped hydrogenated amorphous silicon (a-Si:H). The influence of laser crystallization on structural properties and hydrogen bonding were investigated using Raman backscattering spectroscopy and hydrogen effusion measurements. Crystallization with low laser fluence, E_L, results a stratified structure with polycrystalline silicon layer at the top of an amorphous layer. In fully crystallized polycrystalline silicon the Raman lines in both P- and B-doped specimens are asymmetric, which is indicative of the Fano effect. From the hydrogen effusion spectra, the hydrogen density-of-states distribution is derived. Laser crystallization results in an increase of the hydrogen binding energy by about 0.2–0.3 eV compared to the amorphous starting material.

Keywords: Doped polycrystalline silicon; Laser crystallization; Raman spectroscopy; Hydrogen effusion; Hydrogen bonding; Hydrogen density-of-states

Diakses dari: http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4MFK5PY-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=951df413d1727ea1a727ce3a9310e801