Improving recognition and generalization capability of back-propagation NN using a self-organized network inspired by immune algorithm (SONIA)

Muhammad R. Widyantoa, Hajime Nobuharaa, Kazuhiko Kawamotoa, Kaoru Hirotaa and Benyamin Kusumoputrob

aDepartment of Computational Intelligence and Systems Science, Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

bFaculty of Computer Science, University of Indonesia, Depok Campus, West Java, Indonesia

Received 5 April 2003; revised 14 September 2004; accepted 22 October 2004. Available online 3 February 2005.

Abstract

To improve recognition and generalization capability of back-propagation neural networks (BP-NN), a hidden layer self-organization inspired by immune algorithm called SONIA, is proposed. B cell construction mechanism of immune algorithm inspires a creation of hidden units having local data recognition ability that improves recognition capability. B cell mutation mechanism inspires a creation of hidden units having diverse data representation characteristics that improves generalization capability. Experiments on a sinusoidal benchmark problem show that the approximation error of the proposed network is 1/17 times lower than that of BP-NN. Experiments on real time–temperature-based food quality prediction data shows that the recognition capability is 18% improved comparing to that of BP-NN. The development of the world first time–temperature-based food quality prediction demonstrates the real applicability of the proposed method in the field of food industry.

Keywords: Back-propagation; Immune algorithm; Self-organization; Food quality prediction

Diakses dari: http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4FD79G8-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1006769007&_rerunOrigin= scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=e141315cf280a6677da216441a2b51af